Excision in Banach Simplicial and Cyclic Cohomology
نویسنده
چکیده
We prove that, for every extension of Banach algebras 0 → B → A → D → 0 such that B has a left or right bounded approximate identity, the existence of an associated long exact sequence of Banach simplicial or cyclic cohomology groups is equivalent to the existence of one for homology groups. It follows from the continuous version of a result of Wodzicki that associated long exact sequences exist. In particular, they exist for every extension of C∗-algebras.
منابع مشابه
Simplicial normalization in the entire cyclic cohomology of Banach algebras
We show that the entire cyclic cohomology of Banach algebras defined by Connes has the simplicial normalization property. A key tool in the proof is the notion and properties of supertraces on the Cuntz algebra QA. As an example of further applications of this technique we give a proof of the homotopy invariance of entire cyclic cohomology.
متن کاملRelative Cohomology of Banach Algebras
Let A be a Banach algebra, not necessarily unital, and let B be a closed subalgebra of A. We establish a connection between the Banach cyclic cohomology group HC(A) of A and the Banach B-relative cyclic cohomology group HCnB(A) of A. We prove that, for a Banach algebra A with a bounded approximate identity and an amenable closed subalgebra B of A, up to topological isomorphism, HC(A) = HCnB(A) ...
متن کاملDigital Borsuk-Ulam theorem
The aim of this paper is to compute a simplicial cohomology group of some specific digital images. Then we define ringand algebra structures of a digital cohomology with the cup product. Finally, we prove a special case of the Borsuk-Ulam theorem fordigital images.
متن کاملDigital cohomology groups of certain minimal surfaces
In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...
متن کاملMODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS
Let $A_1$, $A_2$ be unital Banach algebras and $X$ be an $A_1$-$A_2$- module. Applying the concept of module maps, (inner) modulegeneralized derivations and generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $A_i$ into the dual space $A^*_i$ (for$i=1,2$) and such derivations from the triangular Banach algebraof t...
متن کامل